They were first described by irish mathematician william rowan hamilton in 1843 and applied to mechanics in threedimensional space. Pdf cours complet pour apprendre ruby formation informatique. Hamilton defined a quaternion as the quotient of two directed. August, 2001 this document was created using lyx and the latex seminar style. Chapter one collects some old problems on lattice orders and directed partial orders on complex numbers and quaternions, and summarizes recent development in answering those questions. Robert buchanan a quaternionbased approach to robot arm positioning. A feature of quaternions is that multiplication of two quaternions is noncommutative.
We see that the product of two quaternions is still a quaternion with scalar part p0q0. A quaternionbased approach to robot arm positioning. Quaternion closest quaternion p, int axis 1x axis,2y axis,3z axis f. Les quaternions, imagines par hamilton, generalisent les complexes et comme eux sont utiles en geometrie euclidienne, en dimension deux pour ces derniers. Quaternions theory and applications pdf web education. A rotation of euler angles is represented as a matrix of trigonometric functions of the angles. Quaternions department of computer science iowa state university. We introduce quaternion math ematics and discuss why quaternions are a better choice for implementing rotation than the wellknown matrix. Les quaternions unitaires fournissent une notation mathematique commode pour representer. Earth frame xaxis points north yaxis points east zaxis points to planetary center x y j. Les quaternions furent decouverts par hamilton en 1843. Introduction quaternions are commonly used to represent rotations. Tous les cours sont complets et destines aux debutants.
Appeles aussi hypercomplexes, les nombres quaternions ont ete inventes en 1843 par william rowan hamilton pour generaliser les nombres complexes. Analyses similar to that for quaternions representing rotations about the xaxis may be done for rotations about the yaxis or zaxis. Donc on ne peux pas a priori representer so4 ou so3,1 par des quaternions. Quaternions theory and applications pdf quaternions theory and applications pdf. Ce lien entre les quaternions et les rotations ma mene a considerer deux problemes concrets. Vous navez donc pas besoin dexperience pour commencer. Gauss decouvrit egalement les quaternions en 1819, mais ses travaux ne furent publies qu en 1900. Tutorial on quaternions part i computer action team. Aujour coursformation informatique en pdf a telecharger.
In mathematics, the quaternions are a number system that extends the complex numbers. Computer graphics uses quaternions as coordinates for rotations and orientations. Take f to be any field with characteristic different from 2, and a and b to be elements of f. A tutorial on euler angles and quaternions weizmann institute of. Quaternion algebras dartmouth mathematics dartmouth college.
They were introduced by william hamilton 180518651 quaternions were conceived as geometrical operators. The quaternions can be generalized into further algebras called quaternion algebras. Using indices to denote axes, we may use a single function. The set of quaternions is closed under multiplication and addition. Des cours gratuits en pdf pour word, excel, powerpoint et access. At siggraph 1985, quaternion curve methods were introduced. Pages 282 by sandra griffin this book focuses on the theory and applications of quaternions. Les quaternions ont une partie entiere et trois parties imaginaires. Mais les quaternions sont pratiques pour les programmeurs et aussi moins couteux, donc tu devrais les utiliser dans le c. Pour resumer, les quaternions peuvent etre definis comme une matrice.
1284 196 174 1527 1067 722 185 1595 1275 875 1107 443 185 261 1591 726 346 1188 1327 556 1132 1031 1461 471 1312 785 846 12 1309 1291 236